Fellows’ Journal Club
February 2015
(2 of 3)
Coil mass appearances were compared between initial postembolization and follow-up skull radiographs. Changes in the largest diameter of the coil mass generally indicated aneurysm recurrence, especially in the patients with high packing attenuation. Thus, lateral radiographs have the potential to predict aneurysm recurrences.
Abstract
BACKGROUND AND PURPOSE
Skull plain films of coiled aneurysms have been used in a limited role, including morphologic comparison of the coil mass. We aimed to evaluate the efficacy of skull plain films in patients treated with detachable coils by using quantitative assessment.
MATERIALS AND METHODS
In this retrospective study, 78 pairs of the initial and follow-up skull anteroposterior and lateral images were reviewed independently by 2 neuroradiologists. The largest diameter, the perpendicular diameter, and area of the coil mass were measured separately on plain film, and quantitative changes of parameters were compared between subgroups, which were determined by consensus, depending on the need for retreatment. Subgroup analysis was also performed according to aneurysm size, packing attenuation, and ruptured status.
RESULTS
On skull lateral images, mean quantitative changes of the largest diameter (0.53 ± 0.43 mm versus 1.17 ± 0.91 mm, P < .01), the perpendicular diameter (0.56 ± 0.48 mm versus 1.20 ± 1.05 mm, P < .01), and the area of the coil mass (5.21 ± 7.51 mm2 versus 10.55 ± 10.93 mm2, P < .02) differed significantly between subgroups. Receiver operating characteristic analysis showed quantitative change of the largest diameter (>1.1 mm; sensitivity, 50.0%; specificity, 90.3%), the perpendicular diameter (>.9 mm; sensitivity, 62.5%; specificity, 85.5%), and the area (>8.5 mm2; sensitivity, 50.0%; specificity, 83.9%) on skull lateral films to be indicative of aneurysm recurrence, and the diagnostic accuracy of these parameters increased significantly in the high-packing-attenuation group.
CONCLUSIONS
Quantitative measurement of the coil mass by using skull plain lateral images has the potential to predict aneurysm recurrence in follow-up evaluations of intracranial aneurysms with coiling.