3D Printing of Intracranial Aneurysms Using Fused Deposition Modeling Offers Highly Accurate Replications

Editor’s Choice

Editor’s Comment

The authors evaluated fused deposition modeling for the production of aneurysm models replicating patient-specific anatomy using 3D rotational angiographic data from 10 patients. A hollow model with connectors for silicone tubes was fabricated by using acrylonitrile butadiene styrene, the support material was then dissolved, and the surfaces finished by using NanoSeal. The models were filled with iodinated contrast and 3D rotational angiography was performed. Reproduction of hollow aneurysm models was technically feasible in 8 of 10 cases, and a high level of anatomic accuracy was observed.

Abstract

Figure from Froelich et al -- Editor's Choice
Sample aneurysm geometries. 3D rotational angiography demonstrates a giant fusiform ICA aneurysm (model ID E, left) and a supraophthalmic saccular ICA aneurysm (model ID A, right). Patient anatomy (A and B) and corresponding vascular models (C and D) are shown. Note that the anterior cerebral artery was purposely shortened in model ID A.

BACKGROUND AND PURPOSE

As part of a multicenter cooperation (Aneurysm-Like Synthetic bodies for Testing Endovascular devices in 3D Reality) with focus on implementation of additive manufacturing in neuroradiologic practice, we systematically assessed the technical feasibility and accuracy of several additive manufacturing techniques. We evaluated the method of fused deposition modeling for the production of aneurysm models replicating patient-specific anatomy.

MATERIALS AND METHODS

3D rotational angiographic data from 10 aneurysms were processed to obtain volumetric models suitable for fused deposition modeling. A hollow aneurysm model with connectors for silicone tubes was fabricated by using acrylonitrile butadiene styrene. Support material was dissolved, and surfaces were finished by using NanoSeal. The resulting models were filled with iodinated contrast media. 3D rotational angiography of the models was acquired, and aneurysm geometry was compared with the original patient data.

RESULTS

Reproduction of hollow aneurysm models was technically feasible in 8 of 10 cases, with aneurysm sizes ranging from 41 to 2928 mm3 (aneurysm diameter, 3–19 mm). A high level of anatomic accuracy was observed, with a mean Dice index of 93.6% ± 2.4%. Obstructions were encountered in vessel segments of <1 mm.

CONCLUSIONS

Fused deposition modeling is a promising technique, which allows rapid and precise replication of cerebral aneurysms. The porosity of the models can be overcome by surface finishing. Models produced with fused deposition modeling may serve as educational and research tools and could be used to individualize treatment planning.

Read this article: http://bit.ly/3DPrinting-IntracranialAneurysms

3D Printing of Intracranial Aneurysms Using Fused Deposition Modeling Offers Highly Accurate Replications
Jeffrey Ross
Fatal error: Uncaught Error: Call to undefined function get_cimyFieldValue() in /home2/ajnrblog/public_html/wp-content/themes/ample-child/author-bio.php:13 Stack trace: #0 /home2/ajnrblog/public_html/wp-content/themes/ample-child/content-single.php(35): include() #1 /home2/ajnrblog/public_html/wp-includes/template.php(812): require('/home2/ajnrblog...') #2 /home2/ajnrblog/public_html/wp-includes/template.php(745): load_template('/home2/ajnrblog...', false, Array) #3 /home2/ajnrblog/public_html/wp-includes/general-template.php(206): locate_template(Array, true, false, Array) #4 /home2/ajnrblog/public_html/wp-content/themes/ample/single.php(21): get_template_part('content', 'single') #5 /home2/ajnrblog/public_html/wp-includes/template-loader.php(106): include('/home2/ajnrblog...') #6 /home2/ajnrblog/public_html/wp-blog-header.php(19): require_once('/home2/ajnrblog...') #7 /home2/ajnrblog/public_html/index.php(17): require('/home2/ajnrblog...') #8 {main} thrown in /home2/ajnrblog/public_html/wp-content/themes/ample-child/author-bio.php on line 13