Spontaneous Intracranial Hypotension: A Systematic Imaging Approach for CSF Leak Localization and Management Based on MRI and Digital Subtraction Myelography

Editor’s Choice

Using spinal MR imaging to dichotomize patients with spontaneous intracranial hypotension into spinal longitudinal extradural CSF collection positive and negative populations accurately determines the nature of their underlying CSF leak (mechanical dural tear versus CSF venous fistula or nerve root sleeve leak), correctly predicts in whom autologous nondirected and directed epidural blood patch may work and in whom it will fail, and finally prescribes the positioning (prone versus decubitus) for subsequent dynamic myelography providing the most efficient pathway to definitive leak localization and repair. Using this systematic approach, the authors have been able to identify the exact site of CSF leakage in 27 (87%) of 31 consecutive patients referred to their institution with MR imaging evidence of SIH.

Abstract

BACKGROUND AND PURPOSE

Figure 3. Type 2 CSF leak (SLEC-P). A, Schematic depiction of a proximal nerve root sleeve tear bridging the epidural and neural foraminal compartments.
Figure 3. Type 2 CSF leak (SLEC-P). A, Schematic depiction of a proximal nerve root sleeve tear bridging the epidural and neural foraminal compartments.

Localization of the culprit CSF leak in patients with spontaneous intracranial hypotension can be difficult and is inconsistently achieved. We present a high yield systematic imaging strategy using brain and spine MRI combined with digital subtraction myelography for CSF leak localization.

MATERIALS AND METHODS

During a 2-year period, patients with spontaneous intracranial hypotension at our institution underwent MR imaging to determine the presence or absence of a spinal longitudinal extradural collection. Digital subtraction myelography was then performed in patients positive for spinal longitudinal extradural CSF collection primarily in the prone position and in patients negative for spinal longitudinal extradural CSF collection in the lateral decubitus positions.

RESULTS

Thirty-one consecutive patients with spontaneous intracranial hypotension were included. The site of CSF leakage was definitively located in 27 (87%). Of these, 21 were positive for spinal longitudinal extradural CSF collection and categorized as having a ventral (type 1, fifteen [48%]) or lateral dural tear (type 2; four [13%]). Ten patients were negative for spinal longitudinal extradural CSF collection and were categorized as having a CSF-venous fistula (type 3, seven [23%]) or distal nerve root sleeve leak (type 4, one [3%]). The locations of leakage of 2 patients positive for spinal longitudinal extradural CSF collection remain undefined due to resolution of spontaneous intracranial hypotension before repeat digital subtraction myelography. In 2 (7%) patients negative for spinal longitudinal extradural CSF collection, the site of leakage could not be localized. Nine of 21 (43%) patients positive for spinal longitudinal extradural CSF collection were treated successfully with an epidural blood patch, and 12 required an operation. Of the 10 patients negative for spinal longitudinal extradural CSF collection (8 localized), none were effectively treated with an epidural blood patch, and all have undergone (n = 7) or are awaiting (n = 1) an operation.

CONCLUSIONS

Patients positive for spinal longitudinal extradural CSF collection are best positioned prone for digital subtraction myelography and may warrant additional attempts at a directed epidural blood patch. Patients negative for spinal longitudinal extradural CSF collection are best evaluated in the decubitus positions to reveal a CSF-venous fistula, common in this population. Patients with CSF-venous fistula may forgo further epidural blood patch treatment and go on to surgical repair.

Read this article: http://bit.ly/2Ised6K

Spontaneous Intracranial Hypotension: A Systematic Imaging Approach for CSF Leak Localization and Management Based on MRI and Digital Subtraction Myelography
Tags:
AJNR Editorial Office
Fatal error: Uncaught Error: Call to undefined function get_cimyFieldValue() in /home2/ajnrblog/public_html/wp-content/themes/ample-child/author-bio.php:13 Stack trace: #0 /home2/ajnrblog/public_html/wp-content/themes/ample-child/content-single.php(35): include() #1 /home2/ajnrblog/public_html/wp-includes/template.php(812): require('/home2/ajnrblog...') #2 /home2/ajnrblog/public_html/wp-includes/template.php(745): load_template('/home2/ajnrblog...', false, Array) #3 /home2/ajnrblog/public_html/wp-includes/general-template.php(206): locate_template(Array, true, false, Array) #4 /home2/ajnrblog/public_html/wp-content/themes/ample/single.php(21): get_template_part('content', 'single') #5 /home2/ajnrblog/public_html/wp-includes/template-loader.php(106): include('/home2/ajnrblog...') #6 /home2/ajnrblog/public_html/wp-blog-header.php(19): require_once('/home2/ajnrblog...') #7 /home2/ajnrblog/public_html/index.php(17): require('/home2/ajnrblog...') #8 {main} thrown in /home2/ajnrblog/public_html/wp-content/themes/ample-child/author-bio.php on line 13