Application of Deep Learning to Predict Standardized Uptake Value Ratio and Amyloid Status on 18F-Florbetapir PET Using ADNI Data

Editor’s Choice

Using the Alzheimer’s Disease Neuroimaging Initiative dataset, the authors identified 2582 18F-florbetapir PET scans, which were separated into positive and negative cases by using a standardized uptake value ratio threshold of 1.1. They trained convolutional neural networks to predict standardized uptake value ratio and classify amyloid status. The best performance was seen for ResNet-50 by using regression before classification, 3 input PET slices, and pretraining, with a standardized uptake value ratio root-mean-squared error of 0.054, corresponding to 95.1% correct amyloid status prediction. The best trained network was more accurate than humans (96% versus a mean of 88%, respectively). They conclude that deep learning algorithms can estimate standardized uptake value ratio and use this to classify 18F-florbetapir PET scans and have promise to automate this laborious calculation.

Abstract

BACKGROUND AND PURPOSE

Figure 1 from Reith et al
A, The input to ResNet consists of 3 or more input channels. In the case of 1 section prediction, the section is copied to all 3 color channels. If 3 slices are used as input, each color channel has an individual section. The input layer can be modified to include more slices as well. The convultional neural network can be used to predict amyloid status directly or to measure SUVR (regression). B, Histogram of all SUVR values from the cases included in this study (n = 2582).

Cortical amyloid quantification on PET by using the standardized uptake value ratio is valuable for research studies and clinical trials in Alzheimer disease. However, it is resource intensive, requiring co-registered MR imaging data and specialized segmentation software. We investigated the use of deep learning to automatically quantify standardized uptake value ratio and used this for classification.

MATERIALS AND METHODS

Using the Alzheimer’s Disease Neuroimaging Initiative dataset, we identified 2582 18F-florbetapir PET scans, which were separated into positive and negative cases by using a standardized uptake value ratio threshold of 1.1. We trained convolutional neural networks (ResNet-50 and ResNet-152) to predict standardized uptake value ratio and classify amyloid status. We assessed performance based on network depth, number of PET input slices, and use of ImageNet pretraining. We also assessed human performance with 3 readers in a subset of 100 randomly selected cases.

RESULTS

We have found that 48% of cases were amyloid positive. The best performance was seen for ResNet-50 by using regression before classification, 3 input PET slices, and pretraining, with a standardized uptake value ratio root-mean-square error of 0.054, corresponding to 95.1% correct amyloid status prediction. Using more than 3 slices did not improve performance, but ImageNet initialization did. The best trained network was more accurate than humans (96% versus a mean of 88%, respectively).

CONCLUSIONS

Deep learning algorithms can estimate standardized uptake value ratio and use this to classify 18F-florbetapir PET scans. Such methods have promise to automate this laborious calculation, enabling quantitative measurements rapidly and in settings without extensive image processing manpower and expertise.

Read this article: https://bit.ly/2Ni9NAA

Application of Deep Learning to Predict Standardized Uptake Value Ratio and Amyloid Status on 18F-Florbetapir PET Using ADNI Data
Jeffrey Ross
Fatal error: Uncaught Error: Call to undefined function get_cimyFieldValue() in /home2/ajnrblog/public_html/wp-content/themes/ample-child/author-bio.php:13 Stack trace: #0 /home2/ajnrblog/public_html/wp-content/themes/ample-child/content-single.php(35): include() #1 /home2/ajnrblog/public_html/wp-includes/template.php(812): require('/home2/ajnrblog...') #2 /home2/ajnrblog/public_html/wp-includes/template.php(745): load_template('/home2/ajnrblog...', false, Array) #3 /home2/ajnrblog/public_html/wp-includes/general-template.php(206): locate_template(Array, true, false, Array) #4 /home2/ajnrblog/public_html/wp-content/themes/ample/single.php(21): get_template_part('content', 'single') #5 /home2/ajnrblog/public_html/wp-includes/template-loader.php(106): include('/home2/ajnrblog...') #6 /home2/ajnrblog/public_html/wp-blog-header.php(19): require_once('/home2/ajnrblog...') #7 /home2/ajnrblog/public_html/index.php(17): require('/home2/ajnrblog...') #8 {main} thrown in /home2/ajnrblog/public_html/wp-content/themes/ample-child/author-bio.php on line 13