Lateral Asymmetry and Spatial Difference of Iron Deposition in the Substantia Nigra of Patients with Parkinson Disease Measured with Quantitative Susceptibility Mapping

Editor’s Choice

The authors evaluated 24 patients with Parkinson disease and 24 age- and sex-matched healthy controls who underwent 3T MR imaging with a 3D multiecho gradient-echo sequence. On reconstructed quantitative susceptibility maps they measured the susceptibility values in the anterior, middle, and posterior parts of the substantia nigra, the whole substantia nigra, and other deep gray matter structures in both cerebral hemispheres. Susceptibility in the middle part, the posterior part, and the whole substantia nigra was significantly higher in the more and the less affected hemibrains of patients with Parkinson disease than in the healthy controls. Also, susceptibility was significantly higher in the posterior substantia nigra of the more affected hemibrain.

Abstract

A 59-year-old woman with Parkinson disease. A, QSM, axial section at the level of the basal ganglia. ROIs as large as possible were placed. Areas encircled in red, green, and blue are the caudate nucleus, putamen, and globus pallidus. B, QSM, axial section at the level of the midbrain. The encircled area identifies the red nucleus medial to the substantial nigra.
A 59-year-old woman with Parkinson disease. A, QSM, axial section at the level of the basal ganglia. ROIs as large as possible were placed. Areas encircled in red, green, and blue are the caudate nucleus, putamen, and globus pallidus. B, QSM, axial section at the level of the midbrain. The encircled area identifies the red nucleus medial to the substantial nigra.

BACKGROUND AND PURPOSE

Quantitative susceptibility mapping is useful for assessing iron deposition in the substantia nigra of patients with Parkinson disease. We aimed to determine whether quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference in iron deposits in the substantia nigra of patients with Parkinson disease.

MATERIALS AND METHODS

Our study population comprised 24 patients with Parkinson disease and 24 age- and sex-matched healthy controls. They underwent 3T MR imaging by using a 3D multiecho gradient-echo sequence. On reconstructed quantitative susceptibility mapping, we measured the susceptibility values in the anterior, middle, and posterior parts of the substantia nigra, the whole substantia nigra, and other deep gray matter structures in both hemibrains. To identify the more and less affected hemibrains in patients with Parkinson disease, we assessed the severity of movement symptoms for each hemibrain by using the Unified Parkinson’s Disease Rating Scale.

RESULTS

In the posterior substantia nigra of patients with Parkinson disease, the mean susceptibility value was significantly higher in the more than the less affected hemibrain substantia nigra (P < .05). This value was significantly higher in both the more and less affected hemibrains of patients with Parkinson disease than in controls (P < .05). Asymmetry of the mean susceptibility values was significantly greater for patients than controls (P < .05). Receiver operating characteristic analysis showed that quantitative susceptibility mapping of the posterior substantia nigra in the more affected hemibrain provided the highest power for discriminating patients with Parkinson disease from the controls.

CONCLUSIONS

Quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference of iron deposition in the substantia nigra of patients with Parkinson disease.

 

Read this article: http://bit.ly/QuantitativeSusceptibilityMapping

Lateral Asymmetry and Spatial Difference of Iron Deposition in the Substantia Nigra of Patients with Parkinson Disease Measured with Quantitative Susceptibility Mapping
Jeffrey Ross
Fatal error: Uncaught Error: Call to undefined function get_cimyFieldValue() in /home2/ajnrblog/public_html/wp-content/themes/ample-child/author-bio.php:13 Stack trace: #0 /home2/ajnrblog/public_html/wp-content/themes/ample-child/content-single.php(35): include() #1 /home2/ajnrblog/public_html/wp-includes/template.php(812): require('/home2/ajnrblog...') #2 /home2/ajnrblog/public_html/wp-includes/template.php(745): load_template('/home2/ajnrblog...', false, Array) #3 /home2/ajnrblog/public_html/wp-includes/general-template.php(206): locate_template(Array, true, false, Array) #4 /home2/ajnrblog/public_html/wp-content/themes/ample/single.php(21): get_template_part('content', 'single') #5 /home2/ajnrblog/public_html/wp-includes/template-loader.php(106): include('/home2/ajnrblog...') #6 /home2/ajnrblog/public_html/wp-blog-header.php(19): require_once('/home2/ajnrblog...') #7 /home2/ajnrblog/public_html/index.php(17): require('/home2/ajnrblog...') #8 {main} thrown in /home2/ajnrblog/public_html/wp-content/themes/ample-child/author-bio.php on line 13