Abstract
BACKGROUND AND PURPOSE
Quantitative MR imaging techniques are gaining interest as methods of reducing acquisition times while additionally providing robust measurements. This study aimed to implement a synthetic MR imaging method on a new scanner type and to compare its diagnostic accuracy and volumetry with conventional MR imaging in patients with MS and controls.
MATERIALS AND METHODS
Twenty patients with MS and 20 healthy controls were enrolled after ethics approval and written informed consent. Synthetic MR imaging was implemented on a Siemens 3T scanner. Comparable conventional and synthetic proton-density–, T1-, and T2-weighted, and FLAIR images were acquired. Diagnostic accuracy, lesion detection, and artifacts were assessed by blinded neuroradiologic evaluation, and contrast-to-noise ratios, by manual tracing. Volumetry was performed with synthetic MR imaging, FreeSurfer, FMRIB Software Library, and Statistical Parametric Mapping. Repeatability was quantified by using the coefficient of variance.
RESULTS
Synthetic proton-density–, T1-, and T2-weighted images were of sufficient or good quality and were acquired in 7% less time than with conventional MR imaging. Synthetic FLAIR images were degraded by artifacts. Lesion counts and volumes were higher in synthetic MR imaging due to differences in the contrast of dirty-appearing WM but did not affect the radiologic diagnostic classification or lesion topography (P = .50–.77). Synthetic MR imaging provided segmentations with the shortest processing time (16 seconds) and the lowest repeatability error for brain volume (0.14%), intracranial volume (0.12%), brain parenchymal fraction (0.14%), and GM fraction (0.56%).
CONCLUSIONS
Synthetic MR imaging can be an alternative to conventional MR imaging for generating diagnostic proton-density–, T1-, and T2-weighted images in patients with MS and controls while additionally delivering fast and robust volumetric measurements suitable for MS studies.
Read this article: http://bit.ly/28O8qan
Editor’s Choice
SyMRI is a quantitative synthetic MR imaging method where a single saturation recovery TSE sequence is used to estimate the proton density, longitudinal relaxation rate, and transverse relaxation rate and allows for a free range of synthetic weightings. Twenty patients with MS and 20 healthy controls were enrolled and synthetic MR imaging was implemented on a Siemens 3T scanner. Diagnostic accuracy, lesion detection, and artifacts were assessed by blinded neuroradiologic evaluation, and CNR by manual tracing. Synthetic PD-, T1-, and T2-weighted images were of sufficient or good quality and were acquired in 7% less time than with conventional MRI. Synthetic FLAIR images suffered from artifacts. Also, synthetic MRI provided segmentations with the shortest processing time (16 seconds) and the lowest repeatability error for brain volume. Synthetic MRI can be an alternative to conventional MRI for generating diagnostic PD-, T1-, and T2-weighted images in patients with MS with fast and robust volumetric measurements.