Abstract
BACKGROUND AND PURPOSE
Spine MR imaging plays a pivotal role in the diagnostic work-up of spontaneous intracranial hypotension. The aim of this study was to compare the diagnostic accuracy of unenhanced spine MR imaging and intrathecal gadolinium-enhanced spine MR imaging for identification and localization of CSF leaks in patients with spontaneous intracranial hypotension.
MATERIALS AND METHODS
A retrospective study of patients with spontaneous intracranial hypotension examined from February 2013 to October 2017 was conducted. Their spine MR imaging was reviewed by 3 blinded readers for the presence of epidural CSF using 3 different sequences (T2WI, 3D T2WI fat-saturated, T1WI gadolinium). In patients with leaks, the presumed level of the leak was reported.
RESULTS
In total, 103 patients with spontaneous intracranial hypotension (63/103 [61%] women; mean age, 50 years) were evaluated. Seventy had a confirmed CSF leak (57/70 [81%] proved intraoperatively), and 33 showed no epidural CSF on multimodal imaging. Intrathecal gadolinium-enhanced spine MR imaging was nonsuperior to unenhanced spine MR imaging for the detection of epidural CSF (P = .24 and .97). All MR imaging sequences had a low accuracy for leak localization. In all patients, only 1 leakage point was present, albeit multiple suspicious lesions were reported in all sequences (mean, 5.0).
CONCLUSIONS
Intrathecal gadolinium-enhanced spine MR imaging does not improve the diagnostic accuracy for the detection of epidural CSF. Thus, it lacks a rationale to be included in the routine spontaneous intracranial hypotension work-up. Heavily T2-weighted images with fat saturation provide high accuracy for the detection of an epidural CSF collection. Low accuracy for leak localization is due to an extensive CSF collection spanning several vertebrae (false localizing sign), lack of temporal resolution, and a multiplicity of suspicious lesions, albeit only a single leakage site is present. Thus, dynamic examination is mandatory before targeted treatment is initiated.
Read this article: https://bit.ly/342jpJw
Fellows’ Journal Club
The authors performed a retrospective study of patients with spontaneous intracranial hypotension examined from February 2013 to October 2017. The spine MR imaging was reviewed by 3 blinded readers for the presence of epidural CSF using 3 different sequences (T2WI, 3D T2WI fat-saturated, T1WI gadolinium). In patients with leaks, the presumed level of the leak was reported. They conclude that intrathecal gadolinium-enhanced spine MR imaging does not improve the diagnostic accuracy for the detection of epidural CSF. Gadolinium myelography lacks a rationale to be included in the routine spontaneous intracranial hypotension work-up. Heavily T2-weighted images with fat saturation provide high accuracy for the detection of an epidural CSF collection.