Fellows’ Journal Club
October 2014
(3 of 3)
After retrospectively analyzing MR images of 47 patients with proven orbital lymphoproliferative disease, the authors propose that ill-defined lesion margins suggest lymphoma whereas the presence of accompanying sinusitis and intralesional flow voids suggest benign lymphoproliferative disease. Lower ADC and contrast enhancement also suggest lymphoma.
Abstract
BACKGROUND AND PURPOSE
Accurate discrimination of orbital lymphoma from benign orbital lymphoproliferative disorders is crucial for treatment planning. We evaluated MR imaging including DWI and contrast-enhanced MR imaging for differentiating orbital lymphoma from benign orbital lymphoproliferative disorders.
MATERIALS AND METHODS
Forty-seven histopathologically proved orbital lymphoproliferative disorders (29 orbital lymphomas and 18 benign orbital lymphoproliferative disorders) were evaluated. Two board-certified radiologists reviewed visual features on T1-weighted, fat-suppressed T2-weighted, diffusion-weighted, and contrast-enhanced MR images. For quantitative evaluation, ADC and contrast-enhancement ratio of all lesions were measured and optimal cutoff thresholds and areas under curves for differentiating orbital lymphoma from benign orbital lymphoproliferative disorders were determined using receiver operative characteristic analysis; corresponding sensitivities and specificities were calculated.
RESULTS
Multivariate logistic regression analysis showed that ill-defined tumor margin (P = .003) had a significant association with orbital lymphoma whereas the “flow void sign” (P = .005) and radiologic evidence of sinusitis (P = .0002) were associated with benign orbital lymphoproliferative disorders. The mean ADC and contrast-enhancement ratio of orbital lymphomas were significantly lower than those of benign orbital lymphoproliferative disorders (P < .01). An ADC of less than 0.612 × 10−3mm2/s and a contrast-enhancement ratio of less than 1.88 yielded areas under curves of 0.980 and 0.770, sensitivity of 94.1% and 95.5%, and specificities of 93.3% and 80.0% for predicting orbital lymphoma, respectively.
CONCLUSIONS
Some characteristic MR imaging features and quantitative DWI and contrast-enhanced MR imaging are useful in further improving the accuracy of MR imaging for differentiation of orbital lymphoma from benign orbital lymphoproliferative disorders.