3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in the Preoperative Evaluation of Gliomas

Editor’s Choice Fifty-eight patients with pathologically confirmed gliomas underwent preoperative 3D pseudocontinuous arterial spin-labeling and ROC curves were generated for parameters to distinguish high-grade from low-grade gliomas. Both maximum CBF and maximum relative CBF were significantly higher in high-grade than

Analysis of 30 Spinal Angiograms Falsely Reported as Normal in 18 Patients with Subsequently Documented Spinal Vascular Malformations

Fellows’ Journal Club Eighteen patients with 19 lesions underwent a total of 30 negative spinal angiograms. The lesions included 9 epidural arteriovenous fistulas, 8 dural arteriovenous fistulas, and 2 perimedullary arteriovenous fistulas. Seventeen patients underwent endovascular (11) or surgical (6)

Identification and Quantitative Assessment of Different Components of Intracranial Atherosclerotic Plaque by Ex Vivo 3T High-Resolution Multicontrast MRI

Editor’s Choice Fifty-three intracranial arterial specimens with atherosclerotic plaques from 20 cadavers were imaged by 3T MR with T1, T2, and proton-density–weighted FSE and STIR sequences. The signal characteristics and areas of fibrous cap, lipid core, calcification, fibrous tissue, and

Amide Proton Transfer Imaging Allows Detection of Glioma Grades and Tumor Proliferation: Comparison with Ki-67 Expression and Proton MR Spectroscopy Imaging

Editor’s Choice Amide proton transfer–weighted imaging (APTWI) is a novel molecular MR imaging technique developed to detect and quantitatively visualize endogenous proteins and peptides. APTWI is usually reported in terms of asymmetry in the magnetization transfer ratio at 3.5 ppm.